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Abstract A new formalism for quantum mechanical / molec-
ular mechanical (QM/MM) dynamics of chemical species in
solution has been developed, which does not require the con-
struction of any other potential functions except those for
solvent–solvent interactions, maintains all the advantages of
large simulation boxes and ensures the accuracy of ab initio
quantum mechanics for all forces acting in the chemically
most relevant region. Interactions between solute and more
distant solvent molecules are incorporated by a dynamically
adjusted force field corresponding to the actual molecular
configuration of the simulated system and charges derived
from the electron distribution in the solvate. The new for-
malism has been tested with some examples of hydrated ions,
for which accurate conventional ab initio QM/MM simula-
tions have been previously performed, and the comparison
shows equivalence and in some aspects superiority of the new
method. As this simulation procedure does not require any
tedious construction of two-and three-body interaction poten-
tials inherent to conventional QM/MM approaches, it opens
the straightforward access to ab initio molecular dynamics
simulations of any kind of solutes, such as metal complexes
and other composite species in solution.

1 Introduction

As most of the relevant chemical reactions take place in
solution, reliable methods for an accurate theoretical treat-
ment of chemical species in solution have always been in
strong demand. The crucial role played by ions and metal
complexes in biology [1,2] underlines the importance of a
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detailed knowledge of structure and dynamics of these spe-
cies in (aqueous) solution [3–6].

In the past decades numerous methods have been devel-
oped to increase the accuracy of statistical simulations of con-
densed systems, in particular liquids and solutions, beyond
the level of classical pair (and eventually three-body cor-
rected) potential-based molecular dynamics (MD) and Monte
Carlo methods. Due to the computational power needed by
the introduction of quantum mechanical energy and force
calculations, compromises had to be sought through multi-
region approaches, for example, the ONIOM method imple-
mented in the GAUSSIAN programme [7,8].

Car–Parinello dynamics [9] realise this compromise by
the usage of a simple density functional and the reduction
of the investigated system to a moderate size of 100–200
atoms. Hybrid quantum mechanical/molecular mechanical
(QM/MM) methods [10–13] reduce the computational effort
to an affordable extent by treating only a sub-region of the
system by ab initio or density functional theory (DFT) quan-
tum mechanics, and the remaining system by classical poten-
tials.

Experience collected during the past few years with the
application of such methods to solvated ions has shown that
a low-level quantum mechanical treatment is not sufficient
for a reliable description of these systems, and that Hartree–
Fock level calculations with double zeta plus polarisation
basis sets seem to be the lower limit for the method, while
the full inclusion of the first and sometimes even the second
solvation shell in the QM region is mandatory [6,14–16].

The formalism of QM/MM simulations requires, besides
the quantum mechanical calculation of the interactions inside
the QM region and the force-field calculations within the
MM region, the evaluation of interactions between species
inside and outside the QM region, which is usually achieved
with the help of ab initio constructed pair and three-body
potential functions or on the basis of empirical force fields.
The construction of new potential functions is a time-con-
suming and tedious task, implying the evaluation of several
thousands if not ten thousands of single points on the energy
surfaces for all interacting species pairs and triples, followed
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Fig. 1 Definition of the quantum mechanical (QM) and molecular mechanical (MM) regions in the QMCF approach

by the search of suitable analytical functions representing
these interactions.

The procedure presented here aims at two targets in order
to improve the quality of ab initio QM/MM simulations: first,
the accuracy should be pushed to the limits feasible with
present (and near future) computational facilities; second,
the need for the construction of new potentials for every new
species to be introduced – except new solvents – should be
eliminated, thus giving a wide and direct access to numer-
ous systems of interest for complex and solution chemistry
as well as biochemistry, in paticular ions forming solvates or
solvated complexes with other ligands.

The formalism proposed attempts to achieve these goals
by an extension of the QM region to a moderately larger
extent, as found desirable by simulations of some ions in
water [6], with a simultaneous use of quantum mechanically
calculated data for the continuously changing charge distri-
bution in the solute and its first surrounding solvent layer, and
by the evaluation of all interactions of the solute with more
distant solvent molecules on the basis of a dynamic charge
field.

Conventional two-shell QM/MM simulations have proven
in the past to reach high accuracy for structural details and
ultrafast solution dynamics of pure solvent [17] and hydrated
ions [6,14–16]. A satisfactory reproduction of these results
or a possible further improvement could be seen as a crucial
test for the quality of the formalism proposed in this paper.

2 Methodical framework of the QMCF MD approach

The basic principle of the QM/MM formalism [10–13], that
is, the partition into a QM and a MM region is maintained.

The main difference of the methodical framework presented
here lies in the definition and size of the QM region, which
now consists of two subregions (Fig. 1), and the treatment of
interactions/forces between the “inner” QM subregion and
the MM region:
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where Fcore
J (Eq. 1) corresponds to the quantum mechani-

cal force acting on a particle J in the core zone, F layer
J to the

forces acting on a particle J located in the solvation layer and
FMM

J to the forces acting on a particle J in the MM region.
In the latter case, these forces are composed – for the solvent
water – of the forces of the BJH-CF2 [18,19] water model
augmented by the Coulombic forces exerted by all atoms in
the core region (N1) and the solvation layer (N 2), and the
non-Coulombic forces exerted by the atoms in the solvation
layer (N2) (Eq. 3). Due to this formalism the QM forces in
the solvation layer have to be supplemented by the non-Cou-
lombic forces as well (Eq. 2.). The electrostatic interaction
between atoms located in the QM regions (N1 and N2) and
the particles in the MM is incorporated via a perturbation
term of the core Hamilton operator:
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M∑
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q J

riJ
(4)
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Fig. 2 Smoothing function applied between 5.5 and 5.7 Å

where M is the number of atoms in the MM region, qJ are
the partial charges of these atoms (in this case the BJH-CF2
charges).

To ensure a smooth transition of solvent molecules mov-
ing between the solvation layer and the MM region, a smooth-
ing function has to be applied to the atoms of all molecules
located in this smoothing region:

FSmooth
j = S(r) ·

(
F layer

j − FMM
j

)
+ FMM

j (5)

where,

S(r) = 1, for r ≤ r1

S(r) = (r2
0 − r2)2(r2

0 + 2r2 − 3r2
1 )

(r2
0 − r2

1 )3
, for r1 < r ≤ r0 (6)

S(r) = 0 for r > r0

r is the distance of a given solvent molecule (centre of mass)
from the centre of the box, r0 the radius of the QM region
and r1 the inner border of the smoothing region (usually
r0 − 0.2 Å; Fig. 2).

The core region contains the solute, which can be any
type of molecule or composite species, for example, a metal
ion with identical or different ligands, and the solvation layer
consists of one complete layer of solvent molecules surround-
ing the solute. In the simple case of a hydrated ion, this would
correspond to an ion plus two complete hydration spheres in
the QM region, an example for a complex species would be
[Fe(CN)6]3− (core region) with one full hydration layer (sol-
vation layer). Outside this region, the remaining solvent is
treated by molecular mechanics, that is, by suitable potential
functions, which are already available for many common sol-
vents. A smoothing function as being used in conventional
QM/MM simulations [6] ensures a continuous and steady
transition between the quantum mechanically treated solva-
tion layer and the MM region. As smoothing takes place at

a relatively large distance to the solute, transitions are less
abrupt than in conventional QM/MM procedures, also be-
cause the influence of the MM region on the layer part of the
QM region is fully included within the QMCF formalism.
The size of the ‘core’ region is set to include the complete
solute including all solvent ligands directly bound to it. The
‘layer’ region is sized to include a further complete solvation
shell. In the case of the ions treated in the present study this
means a diameter of 5.0–6.5 Å for the ‘core’ and 10.0–11.5 Å
for the total QM region.

2.1 Evaluation of energies and forces

Inside the QM region, all interactions are evaluated by means
of quantum mechanics, in the examples presented here at ab
initio Hartree–Fock level with DZP basis sets. Other levels
of theory could be applied as well, for example, MP/2 [20]
(with much higher computational effort) or a suitable den-
sity functional method, such as B3LYP [21] (with computing
times similar to HF). Interactions between the outer solva-
tion layer inside the QM region and solvent molecules in
the MM region, and interactions between solvent molecules
within the MM region are treated by the solvent – solvent
potential functions, making use of the smoothing function
as outlined before. When calculating the Coulombic interac-
tions between solvent molecules in the layer region and those
in the MM region, the actual quantum mechanically evalu-
ated charges obtained from population analysis are assigned
to all atoms in the QM layer region (accounting also for the
influence of the point charges in the MM region).

Among the numerous methods of population analysis the
QMCF formalism has been primarily examined employing
the most common Mulliken method with pure water as test
system. This test has shown that the Mulliken charges in the
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Fig. 3 Coulombic (solid line) and non-Coulombic (dashed line) interaction potentials of the BJH-CF2 water model [18,19]

QM regions fluctuate between −0.67 and −0.78 for oxygen
and from +0.33 to +0.40 for hydrogen, respectively. Hydro-
gens of the same water molecule generally have different
partial charges due to different hydrogen bonding. The aver-
age charges lead to a somewhat higher dipole moment of the
individual water molecules than for isolated gas phase mol-
ecules, which is quite realistic for liquid water. The charges
of the ions show a considerable fluctuation in charge trans-
fer. For instance the partial Mulliken charge of Al(III) lies
between 2.4 and 2.6, for Mn(II) and Cu(II) the correspond-
ing values fluctuate between 1.2 and 1.5.

The aforementioned test simulation for pure water has
shown that for the given basis sets the scheme using Mul-
liken population and the BJH-CF2 water model leads to a
satisfactory over-all description of several microscopic and
macroscopic properties of water. Further tests of the QMCF
approach with other population analysis methods and basis
sets are planned, however.

Solvent transitions between QM and MM regions are
allowed and, due to the smoothing function, occur without
any discontinuity of energies and forces. In this context, the
use of the flexible BJH-CF2 water model is also important
for reasons of consistency with the fully flexible molecular
geometries in the QM region. Any molecule transiting to the
MM region can retain its geometry as initial configuration in
the MM region.

The main difference to conventional QM/MM techniques
concerns the evaluation of interactions between solvent mol-
ecules in the MM region and the solute, that is, the inner ‘core’
of the QM region. Due to the distance of this ‘core’ to the

MM region, all short-range terms of any type of interaction
potentials, which usually consist of a Coulombic term plus a
series of r−n(n > 3) terms, sometimes also an exponential
term, become negligibly small, and in most cases are already
eliminated by the usual cut-offs in typical simulation proto-
cols. The illustration of the Coulombic and non-Coulombic
interaction potentials of the BJH-CF2 model are depicted in
Fig. 3. It can be seen that the non-Coulombic interactions are
negligible at long distances, and only the Coulombic poten-
tials remain relevant.

These Coulombic interactions can be evaluated simply
from the point charges assigned to the molecules/atoms in the
MM region and the partial charges on the atoms of the solute.
This approach has been utilised already in a simple way some
decades ago [22] and is currently applied in some QM/MM
simulation protocols for organic and biomolecules [23]. In
the present case this corresponds to an electrostatic descrip-
tion by a dynamically changing field of point charges, which
varies according to the movements of atoms inside the QM
region(s) and molecules in the MM region in the course of
the simulation. As a further improvement of this charge field,
point charges assigned to atoms in the QM region will be
redefined in every step of the simulation according to the
new configuration, following each quantum mechanical cal-
culation step. This ensures the continuous adaptation of the
dynamical charge field to all polarisation and charge transfer
effects within solute and surrounding solvent layer accord-
ing to the dynamical changes of the solute’s structure (which
are much more significant than the small changes eventu-
ally occurring at the solvent molecules in the MM region,
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which are not considered in this formalism). For both QM
regions, the influence of the charges of the molecules in the
MM region is taken into account by incorporating the charges
of their atoms as additional, perturbational term into the core
Hamiltonian, representing the outside solvent influence at
molecular level according to the actual location and orienta-
tion of the solvent molecules (Eq. 4).

All important solvent exchange processes take place
within the QM region, and thus the relevant dynamics are
evaluated with the accuracy of quantum mechanically calcu-
lated forces.

By this approach, the treatment of solutes of very different
nature becomes a much more simple and straightforward pro-
cess, as only potential functions for solvent–solvent inter-
actions are needed, whereas all other interactions are dealt
with at the quantum mechanical level, which also means at
much higher accuracy than molecular mechanics potentials
could achieve. The application of all other conditions of a
MD simulation (large number of solvent molecules, periodic
boundary condition, minimal image convention and long-
range force corrections by reaction field) ensure that the
system corresponds to the condensed, liquid state. It should
not be concealed, however, that the inclusion of a relatively
large number of species in the QM regions pushes the com-
putational effort to a much higher demand than one-shell
QM/MM molecular dynamics. On the other hand, the con-
stant and rapid progress of processor speed has made simu-
lations of the ab initio QM-CF-MD type already feasible and
will soon allow the treatment of fairly complex systems of
solution chemistry and biochemistry.

The programme code (TCI-QSIM) includes an interface
to the TURBOMOLE [24–27] programme, which allows a
parallelised performance of the quantum mechanical calcula-
tions. All simulations reported here were performed on Linux
clusters with four to eight (according to optimal parallelisa-
bilty) 2.8-GHz processors. The other details of the molecular
dynamics simulation protocol were the same as in previous
simulations [6]: elementary box with one ion and 499 water
molecules, periodic boundary condition, NVT ensemble with
temperature control by the Berendsen algorithm [28], time
step of 0.2 fs, general predictor–corrector algorithm, cut-off
for non-Coulombic interactions in the MM region of 5 and
3 Å for O–H and H–H, respectively, and reaction field correc-
tion for long-range Coulombic interactions. For the solvent
water, the BHJ-CF2 [18,19] potential was used, as it ensures
by its intramolecular term the full flexibility of water mole-
cules transiting from the QM into the MM region.

The DZP basis sets for metal ions and water for the QM
region were the same as employed in previous simulations [15,
16,29]. The starting configurations were taken from equili-
brated two-shell QM/MM MD simulations of the respective
ions. After 2–3 ps of equilibration at least 5 ps of sampling
were performed.

The CPU time required for one simulation amounts to
6 – 8 months and thus, the net computing time for all reported
simulations amounts to approximately 50 months, using on
average six processors in parallel for each simulation.

3 Test results and evaluation of the method

Hydrated ions, for which conventional ab initio QM/MM-
MD simulations including two hydration shells in the QM
region with a well-established simulation protocol have been
performed [15,16,29], were investigated using the new ab
initio QMCF approach.

Testing of the new method has been performed in two
steps. In the first step, the QMCF scheme was applied to
Mn(II) [29] and Cu(II) [15] still employing the fixed MM
charges of solute and solvent molecules in the evaluation of
the Coulombic forces acting between central ion and water
molecules in the first and second hydration shell – being part
of the QM region – and the surrounding bulk. This proce-
dure corresponds to the employment of a fixed charge field,
but with the possibility to avoid the construction of spe-
cific solute–solvent interaction potentials, and allows for a
direct comparison of the QMCF scheme with conventional
QM/MM molecular dynamics.

In the second step, dealing with Al(III) and Cu(II) as test
examples, the previously outlined consideration of continu-
ously changing charges computed quantum mechanically via
Mulliken population analysis [30] was invoked, the charges
of the MM region were included as perturbation into the
Hamiltonian of the QM regions. This second step allows to
determine the significance of the fluctuations of charges and
polarisations due to the movements of all particles in the
system.

Tables 1 and 2 show a comparison of characteristic results
for Mn(II) and Cu(II) for different ab initio QM/MM simu-
lation methods, the first conventional including only the first
hydration shell into the QM region and applying a three-
body correction function for the second hydration shell (upto
6 Å), the second conventional, including also the second shell
into the QM region and the third one employing the new
QMCF formalism (step 1). Figures 4 and 5 show the cor-
responding ion–oxygen radial distribution functions (RDF).
For the two-shell QM/MM MD simulation of Mn(II) the same
simulation protocol was employed as for the QMCF MD
simulations. However, the treatment of the forces refers to
the QM/MM MD formalism, including the same smoothing
functions employed in the two-shell simulations of Al(III) [16]
and Cu(II) [15].

In the case of Mn(II) (Table 1) one observes nearly no
difference between the three applied methods for the first
hydration shell, whereas the second shell was difficult to cha-
racterise with the one-shell-only method and showed a some-
what unusual shape and extension even after inclusion of the
second shell (Fig. 4). Introduction of the new formalism (step
1) smoothens the RDF in this region and reduces the second
shell coordination number to a very reasonable value of 14
ligands. A similar effect is observed in the case of Cu(II),
where the QMCF procedure (step 1) leads to a better char-
acterisation of the second shell without the ambiguous peak
at 5.2 Å (Table 2, Fig. 5), probably caused by the transition
between QM and MM region, which is more abrupt in the
conventional formalism than in the QMCF approach.
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Table 1 Maxima rM and minima rm of the Mn(II)–O radial distribution function in Å and average coordination numbers of the respective shells

gMn(II)−O

rM1 rm1 rM2 rm2 CNav,1 CNav,2 Ref.

One-shell QM/MM simulation 2.3 2.7 4.4 5.2 6.0 15.9 [29]
Two-shell QM/MM simulation 2.2 2.8 4.9 4.5/5.9a 6.0 26.1 This work
QMCF simulation – step 1 2.2 2.8 4.6 5.2 6.0 13.7 This work

a ambiguous shape of the second shell peak (Fig. 4)

Table 2 Maxima rM and minima rm of the Cu(II)–O radial distribution function in Å and average coordination numbers of the respective shells.

gCu(II)−O

rM1 rm1 rM2 rm2 CNav,1 CNav,2 Ref.

One-shell QM/MM simulation (HF) 2.05/2.2 2.8 4.6 5.3 6.0 11.7 [34]
One-shell QM/MM simulation (MP/2) 2.05/2.35/2.5 2.7 4.6 5.3 6.0 10.4 [31]
Two-shell QM/MM simulation (HF) 2.0/2.15/2.3 2.6 4.2 5.0 6.0 12.7 [15]
QMCF simulation – step 1 (HF) 2.0/2.15/2.3 2.9 4.4 5.5 6.0 16.7 This work

The 2nd/3rd value for rM1 corresponds to the slight shoulders reflecting the Jahn–Teller distortions of the first hydration shell, determined by
differential analysis of the first peak

Fig. 4 Mn–O radial distribution functions and their running integration numbers for a QMCF MD (step 1, see text) (solid line) and a two-shell
QM/MM (dashed line) MD simulation of Mn(II) in aqueous solution

Cu(II) is the ion, for which the largest number of experi-
mental and simulation data are available. The data in Table 2
illustrate that inclusion of the second shell in the conventional
QM/MM technique slightly shortens the distances of the
nearer (i.e. “equatorial”) ligands in the Jahn–Teller distorted
D4h configuration. In the case of Cu(II), the possible influ-
ence of electron correlation has also been studied by means
of an ab initio QM/MM MD simulation at MP/2 level [31], al-
though only at one-shell level due to the computational effort
of ∼8 months. The data have shown this influence to be rather
minor, and that inclusion of a second hydration shell is more
important for the quality of the simulation than the inclusion
of correlation effects. Application of the new formalism with
fixed charge field removes the ambiguous intermediate peak

between 5 and 5.5 Å (Fig. 5) – apparently a consequence of
the improved smoothing for the transitions between QM and
MM regions – and makes the splitting of the first shell peak
due to the Jahn–Teller effect more pronounced. The aver-
age Jahn–Teller splitting of 2.0/2.3 Å for first shell ligands
in the QMCF simulation corresponds very well to the EX-
AFS data for a dilute solution (molar Cu/water ratio 1:280),
being reported as 2.04/2.29 Å [4], and the average second
shell location at 4.35 Å is near to that of an EXAFS study for
a five-times higher concentration (molar ratio 1:111), being
4.17 [4]. This shorter distance is connected to a reduced coor-
dination number of ∼8 in this experimental setting and can be
a consequence of concentration and anion effects as well as
methodical limits of the spectroscopic methods applied to the
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Fig. 5 Cu–O radial distribution functions and their running integration numbers for a QMCF MD (step 1, see text) (solid line) and a two-shell
QM/MM (dashed line) MD simulation of Cu(II) in aqueous solution

Table 3 Maxima rM and minima rm of the Al(III)–O radial distribution function in Å and average coordination numbers of the respective shells

gAl(III)−O

rM1 rm1 rM2 rm2 rM3 rm3 CNav,1 CNav,2 CNav,3 Ref.

One-shell QM/MM simulation 1.9 2.2 4.2 4.8 ∼6.1 7.5 6.0 13.8 42.4 [16]
Two-shell QM/MM simulation 1.8 2.1 4.1 4.7 ∼6.1 7.2 6.0 12.2 37.3 [16]
QMCF simulation – complete formalism 1.9 2.3 4.1 4.8 6.4 7.2 6.0 11.8 31.7 This work

Table 4 Maxima rM and minima rm of the Cu(II)–O radial distribution function in Å and average coordination numbers of the respective shells

gCu(II)−O

rM1 rm1 rM2 rm2 CNav,1 CNav,2 Ref.

QMCF simulation – step 1 2.0 2.9 4.4 5.5 6.0 16.7 This work
QMCF simulation – complete formalism 2.03/2.25/2.35 2.9 4.5 5.3 6.0 13.5 This work

The 2nd/3rd value for rM1 corresponds to the slight shoulders reflecting the Jahn–Teller distortions of the first hydration shell, determined by
differential analysis of the first peak

second shell with its fast dynamics (Kex = 4.4 ·109 s−1 [32,
33]) and wide coordination number distribution from 10 to
16 [15].

The ill-shaped second shell peaks of the Mn–O and the
Cu–O radial distribution functions (RDF) seem to be a con-
sequence of the more abrupt transition between QM and
MM region in the conventional QM/MM formalism, where
the subtractive method considers the same water molecules
with different charges. In a one-shell simulation, this effect
is partially corrected by the three-body correction function,
which is not employed in two-shell simulations. In the QMCF
method, however, all forces are evaluated on the basis of the
quantum mechanically derived charges and, therefore, tran-
sitions between QM and MM regions are less abrupt.

Tables 3 and 4 show the comparison of characteristic
results for Al(III) and Cu(II) obtained by conventional

two-shell ab initio QM/MM simulations, and by the new
QMCF formalism employing all of its features, that is, also
the fluctuating atomic charges of the atoms within the QM
region and the incorporation of the MM molecules as pertur-
bation operator representing their atomic charges and loca-
tion/orientation in the QM Hamiltonian. Figures 6 and 7 show
the corresponding RDFs.

Al(III) is a test case of particular interest because of the
polarisation effects expected due to the high charge of the
cation. The new approach – after implementing also step 2 –
is more suitable to reflect their influence, as it considers all
changes in the net charges of the atoms in the course of
the simulation. The results presented in Table 3 and Fig. 6
show some minor differences between the conventional two-
shell QM/MM MD simulation and the QMCF test run of a
few picoseconds. The peaks get slightly lower, the first peak
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Fig. 6 Al–O radial distribution functions and their running integration numbers for a QMCF MD (complete formalism, see text) (solid line) and
a two-shell QM/MM (dashed line) MD simulation of Al(III) in aqueous solution

Fig. 7 Cu–O radial distribution functions and their running integration numbers for step 1 (dashed line) and the complete formalism (solid line)
of a QMCF MD simulation of Cu(II) in aqueous solution

shows some tailing and a third shell can hardly be defined. It
should be mentioned that in the course of the QMCF simula-
tion some indications of a beginning dissociation of a proton
from a water ligand were observed, which was never the
case in the conventional simulation. The improved consider-
ation of the fluctuating charges and the inclusion of the outer
sphere charges in the Hamiltonian of the QM region can be
seen as a reason for an easier occurrence of this phenome-
non, which is actually known to happen in solutions of Al(III)
salts, making them considerably acidic. These results show
that the new formalism – which did not require the use of any
Al(III)-solvent potentials – does not only produce results of

equal quality as a conventional ab initio QM/MM simula-
tion, but even can improve some of the features describing
the structure of hydrated Al(III).

In the case of Cu(II) the inclusion of the charge field com-
ponents leads to slight modifications compared with the for-
malism employing only step 1 of the QMCF method (Table
2). The explicit consideration of the fluctuating charges and
the external charge field via a perturbation of the Hamilto-
nian apparently has only minor effects on the first shell, but
the Jahn–Teller distortions become more visible. The main
effect is recognised in the more compact structure of the sec-
ond shell and its better separation from the bulk. Therefore,



Ab initio quantum mechanical charge field (QMCF) molecular dynamics 85

a less ambiguous determination of the average second shell
hydration number has become possible, being 13.5 up to the
shell border at 5.3 Å. An evaluation of further implications
would have to refer to dynamical data, for which, however, a
much longer simulation time would be required than the few
picoseconds of the test run.

4 Conclusion

The test systems studied show clear evidence that the sim-
ulation method proposed here leads to equivalent, and even
slightly improved results compared with the conventional ab
initio QM/MM simulations. Improvements over the conven-
tional method are partly due to the more continuous transition
between QM and MM regions and partly a consequence of
the flexible charge distribution treatment due to the continu-
ous change of the electron distribution and its consideration
in all contributions to the forces acting on the atoms/mol-
ecules in the system. The computational effort needed is
almost the same as in conventional ab initio QM/MM sys-
tems and increases with the overall size of the solvate, that is,
the diameter of the total QM region. The main advantage of
the QM/MM-CF approach lies in its ability of a straightfor-
ward treatment of any new kind of solute without the need for
evaluating individual potential functions for all interactions
between the solute and solvent components by constructing
ab initio energy surfaces for pair (and sometimes necessar-
ily three-body) interactions. This gives immediate access to
the study of structure and dynamics of a large number of
complex species in aqueous and non-aqueous solution and to
biologically active compounds in their aqueous environment.
Given the continuously increasing performance of comput-
ers at decreasing cost the perspectives of the application of
this method appear quite favourable.
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